Critical Transitions in Piecewise Uniformly Continuous Concave Quadratic Ordinary Differential Equations
نویسندگان
چکیده
Abstract A critical transition for a system modelled by concave quadratic scalar ordinary differential equation occurs when small variation of the coefficients changes dramatically dynamics, from existence an attractor–repeller pair hyperbolic solutions to lack bounded solutions. In this paper, tool analyze phenomenon asymptotically nonautonomous ODEs with uniformly continuous or piecewise is described, and used determine occurrence transitions certain parametric equations. Some numerical experiments contribute clarify applicability tool.
منابع مشابه
Invariant functions for solving multiplicative discrete and continuous ordinary differential equations
In this paper, at first the elemantary and basic concepts of multiplicative discrete and continous differentian and integration introduced. Then for these kinds of differentiation invariant functions the general solution of discrete and continous multiplicative differential equations will be given. Finaly a vast class of difference equations with variable coefficients and nonlinear difference e...
متن کاملImplicit Runge-Kutta Methods for Lipschitz Continuous Ordinary Differential Equations
Implicit Runge-Kutta(IRK) methods for solving the nonsmooth ordinary differential equation (ODE) involve a system of nonsmooth equations. We show superlinear convergence of the slanting Newton method for solving the system of nonsmooth equations. We prove the slanting differentiability and give a slanting function for the involved function. We develop a new code based on the slanting Newton met...
متن کاملSummary: Ordinary Differential Equations
1 Initial Value Problem We are given a right hand side function f(t, y) with f : [t0, T ]×Rn → Rn and an initial value y0 ∈ Rn. We want to find a function y(t) with y : [t0, T ] → Rn such that y′(t) exists, is continuous and satisfies the initial value problem y′(t) = f (t, y(t)) , y(t0) = y0. (1) We assume that f(t, y) satisfies a Lipschitz condition with respect to y (at least for y with |y −...
متن کاملLinearizable ordinary differential equations . ∗
Our purpose in this paper is to study when a planar differential system polynomial in one variable linearizes in the sense that it has an inverse integrating factor which can be constructed by means of the solutions of linear differential equations. We give several families of differential systems which illustrate how the integrability of the system passes through the solutions of a linear diff...
متن کاملOrdinary Differential Equations
Abstract We extend the Eruguin result exposed in the paper ”Construction of the whole set of ordinary differential equations with a given integral curve” published in 1952 and construct a differential system in R which admits a given set of the partial integrals, in particular we study the case when theses functions are polynomials. We construct a non-Darboux integrable planar polynomial system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Dynamics and Differential Equations
سال: 2022
ISSN: ['1040-7294', '1572-9222']
DOI: https://doi.org/10.1007/s10884-022-10225-3